Thursday, April 27, 2017

A shift in perspective - or: what makes an electron an electron?

We have recently published a new paper. It is based partially on the master thesis of my student Larissa Egger, but involves also another scientist from a different university. In this paper, we look at a quite fundamental question: How do we distinguish the matter particles? What makes an electron an electron and a muon a muon?

In a standard treatment, this identity is just an integral part of the particle. However, results from the late 1970ies and early 1980ies as well as our own research point to a somewhat different direction. I have described the basic idea sometime back. The basic idea back then was that what we perceive as an electron is not really just an electron. It consists itself out of two particles. A Higgs and something I would call a constituent electron. Back then, we were just thinking about how to test this idea.

This took some time.

We thought this was an outrageous question, putting almost certain things into question.

Now we see: Oh, this was just the beginning. And things got more crazy in every step.

But, as a theoretician, if I determine the consequences of a theory, we should not stop because something sounds crazy. Almost everything what we take for granted today, like quantum physics, sounded crazy in the beginning. But if you have reason to believe that a theory is right, then you have to take it seriously. And then its consequences are what they are. Of course, we may just have made an error somewhere. But that remains to be checked, preferably by independent research groups. After all, at some point, it is hard to see the forest for the trees. But so far, we are convinced that we made at most quantitative errors, but no qualitative errors. So the concept appears to us sound. And therefore I keep on writing about it here.

The older works was just the beginning. And we just followed their suggestion to take the standard model of particle physics not only serious, but also literal.

I will start out with the leptons, i.e. electrons, muons, and tauons as well as the three neutrinos. I come back to the quarks later.

The first thing we established was that it is indeed possible to think of particles like the electron as a kind of bound state of other particles, without upsetting what we have measured in experiment. We also gave an estimate what would be necessary to test this statement in an experiment. Though really exact numbers are as always complicated, we believe that the next generation of experiments which use electrons and positrons and collide them could be able to detect difference between the conventional picture and our results. In fact, the way they are currently designed makes them ideally suited to do so. However, they will not provide a measurement before, roughly, 2035 or so. We also understand quite well, why we would need these machines to see the effect. So right now, we will have to sit and wait for this. Keep your fingers crossed that they will be build, if you are interested in the answer.

Naturally, we therefore asked ourselves if there is no alternative. The unfortunate thing is that you will need at least enough energy to copiously produce the Higgs to test this. The only existing machine being able to do so is the LHC at CERN. However, to do so they collide protons. So we had to discuss whether the same effect also occurs for protons. Now a proton is much more complicated than any lepton, because it is already build from quarks and gluons. Still, what we found is the following: If we take the standard model serious as a theory, then a proton cannot be a theoretically well-defined entity if it is only made out of three quarks. Rather, it needs to have some kind of Higgs component. And this should be felt somehow. However, for the same reason as with the lepton, only the LHC could test it. And here comes the problem. Because the proton is made up out of three quarks, it has already a very complicated structure. Furthermore, even at the LHC, the effect of the additional Higgs component will likely be tiny. In fact, the probably best chance to probe it will be if this Higgs component can be linked to the production of the heaviest known quark, the top quark The reason is that the the top quark is so very sensitive to the Higgs. While the LHC indeed produces a lot of top quarks, producing a top quark linked to a Higgs is much harder. Even just the strongest effect has not yet been seen above doubt. And what we find will only be a (likely small) correction to it. There is still a chance, but this will need much more data. But the LHC will keep on running for a long time. So maybe, it will be enough. We will see.

So, this is what we did. In fact, this will all be part of the review I am writing. So, more will be told about this.

If you are still reading, I want to give you some more of the really weird stuff, which came out.

The first is that live is actually even more complicated. Even without all of what I have written about above, there are actually two types of electrons in the standard model. One which is affected by the weak interaction, and one which is not. Other than that, they are the same. They have the same mass, and they are electromagnetically the same. The same is actually true for all leptons and quarks. The matter all around us is actually a mixture of both types. However, the subtle effects I have been talking so far about only affect those which are affected by the weak interaction. There is a technical reason for this (the weak interaction is a so-called gauge symmetry). However, it makes detecting everything more harder, because it only works if we get the 'right' type of an electron.

The second is that electrons and quarks come in three sets of four particles each, the so-called generations or families. The only difference between these copies is the mass. Other than that, there is no difference that we know of. Though we cannot exclude it, but we have no experiment saying otherwise with sufficient confidence. This is one of the central mysteries. It occupies, and keeps occupying, many physicist. Now, we had the following idea: If we provide internal structure to the members of the family - could it be that the different generations are just different arrangements of the internal structure? That such things are in principle possible is known already from atoms. Here, the problem is even more involved, because of the two types of each of the quarks and leptons. This was just a speculation. However, we found that this is, at least logically, possible. Unfortunately, it is yet too complicated to provide definite quantitative prediction how this can be tested. But, at least, it seems to be not at odds with what we know already. If this would be true, this would be a major step in understanding particle physics. But we are still far, far away from this. Still, we are motivated to continue this road.

Monday, April 10, 2017

Making connections inside dead stars

Last time I wrote about our research on neutron stars. In that case we were concerned with the properties of neutron stars - its mass and size. But these are determined by the particles inside the star, the quarks and gluons and how they influence each other by the strong force.

However, a neutron star is much more than just quarks and gluons bound by gravity and the strong force.

Neutron stars are also affected by the weak force. This happens in a quite subtle way. The weak force can transform a neutron into a proton, an electron and an (anti)neutrino, and back. In a neutron star, this happens all the time. Still, the neutron are neutrons most of the time, hence the name neutron stars. Looking into this process more microscopically, the protons and neutrons consist out of quarks. The proton out of two up quarks and a down quark, and the neutron out of one up quark and two down quarks. Thus, what really happens is that a down quark changes into an up quark and an electron and an (anti)neutrino and back.

As noted, this does not happen too often. But this is actually only true for a neutron star just hanging around. When neutron stars are created in a supernova, this happens very often. In particular, the star which becomes a supernova is mostly protons, which have to be converted to neutrons for the neutron star. Another case is when two neutron stars collide. Then this process becomes much more important, and more rapid. The latter is quite exciting, as the consequences maybe observable in astronomy in the next few years.

So, how can the process be described? Usually, the weak force is weak, as the name says. Thus, it is usually possible to consider it a small effect. Such small effects are well described by perturbation theory. This is OK, if the neutron star just hangs around. But for collisions, or forming, the effect is no longer small. And then other methods are necessary. For the same reasons as in the case of inert neutron stars we cannot use simulations to do so. But our third possibility, the so-called equations of motion, work.

Therefore Walid Mian, a PhD student of mine, and myself used these equations to study how quarks behave, if we offer to them a background of electrons and (anti)neutrinos. We have published a paper about our results, and I would like to outline what we found.

Unfortunately, we still cannot do the calculations exactly. So, in a sense, we cannot independently vary the amount of electrons and (anti)neutrinos, and the strength of their coupling to the quarks. Thus, we can only estimate what a more intense combination of both together means. Since this is qualitatively what we expect to happen during the collision of two neutron stars, this should be a reasonable approximation.

For a very small intensity we do not see anything but what we expect in perturbation theory. But the first surprise was already when we cranked up the intensity. Much earlier than expected new effects which showed up. In fact, they started to be there at intensities some factor 10-1000 smaller than expected. Thus, the weak interaction could play a much larger role in such environments than usually assumed. That was the first insight.

The second was that the type of quarks - whether it is an up or a down quark is more relevant than expected. In particular, whether they have a different mass, like it is in nature, or the same mass makes a big difference. If the mass is different qualitatively new effects arise, which was not expected in this form.

The observed effects themselves are actually quite interesting: They make the quarks, depending on their type, either more sensitive or less sensitive to the weak force. This is important. When neutron stars are created or collide, they become very hot. The main way to get cooler is by dumping (anti)neutrinos into space. This becomes more efficient if the quarks react less to the weak force. Thus, our findings could have consequences on how quickly neutron stars could become colder.

We also saw that these effects only start to play a role if the quark can move inside the neutron star over a sufficiently large distance. Where sufficiently large is here about the size of a neutron. Thus the environment of a neutron star shows itself already when the quarks start to feel that they do not live in a single neutron, but rather in a neutron star, where there neutrons touch each other. All of the qualitative new effects then started to appear.

Unfortunately, to estimate how important these new effects for the neutron star really are, we first have to understand what it means for the neutrons. Essentially, we have to somehow pull our results on a larger scale - what does this mean for the whole neutron - before we can recreate our investigation of the full neutron star with these effects included. Not even to mention the impact for a collision, which is even more complicated.

Thus, our current next step is to understand what the weak interaction implies for hadrons, i.e. states of multiple quarks like the neutron. The first step is to understand how the hadron can decay and reform by the weak force, as I described earlier. The decay itself can be described already quite well using perturbation theory. But decay and reforming, or even an endless chain of these processes, cannot yet. To become able to do so is where we head next.